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ABSTRACT 
While power gating is a promising technique to reduce the static 
power consumption of network-on-chip (NoC), its effectiveness is 
often hindered by the requirement of maintaining network connec-
tivity and the limited knowledge of traffic behaviors. In this paper, 
we present Smart Butterfly, a core-state-aware NoC power-gating 
scheme based on flattened butterfly that utilizes the active/sleep 
state information of processing cores to improve power-gating 
effectiveness. Smart Butterfly exploits the rich connectivity of the 
flattened butterfly topology to allow more on-chip routers to be 
power-gated when their attached cores are asleep. We present two 
heuristic algorithms to determine the set of routers to be turned on 
to maintain connectivity and allow tradeoff between power con-
sumption and average packet latency. Simulation results show an 
average of 42.85% and 60.48% power reduction of Smart Butter-
fly over prior art on 4x4 and 8x8 networks, respectively. 
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1. INTRODUCTION 
Networks-on-chip (NoCs) have been proposed as a key compo-
nent in many-core systems such as chip-multiprocessors (CMPs) 
and multiprocessor system-on-chips (MPSoCs). Compared with 
traditional bus structures, the relatively complex NoCs with rout-
ers and links can draw a substantial percentage of chip power 
[2][3][4][10]. This is particularly true as cores are often under-
utilized and therefore put into low-power sleep states (10–50% 
average utilization [8]). 

An effective approach to reduce NoC power consumption is to 
apply power gating techniques. Most state-of-the-art NoC power 
gating schemes are traffic-oriented, in which routers are power 
gated when there is no traffic that needs to go through the routers 
[9]. However, the traffic-oriented power gating strategies use only 
traffic information and are unable to take full advantage of inac-
tive cores. For example, even if a core is in sleep state and, thus, 
has no incoming or outgoing packets, its attached router cannot 
stay power-gated for long. This is because the router must be 
awoken intermittently to forward the passing packets to support 
communication of other active cores. In typical applications, the 
length of router idle periods is in the order of tens to hundreds of 
cycles – short enough to cause frequent wakeups and the associat-
ed energy overhead. 

A new approach, which we refer to as core-state-aware power 
gating, aims to save more static power by enhancing NoCs with 
information of core states to make better power gating decisions. 
To be specific, some routers that are attached to the sleeping cores 

stay power-gated until the cores become active. Any traffic that 
would go through the sleeping routers is detoured. As the sleep 
periods of cores are in the order of several milliseconds [8], this 
approach allows routers to be turned off for a much longer time 
compared to the traffic-oriented approach. Note that not all of the 
routers attached to sleeping cores can be turned off as the network 
must maintain full connectivity of the active cores. In some cases, 
it may even need to turn on additional routers than the minimally 
required in order to reduce detoured traffic, and therefore reduce 
packet latency.  

The closest example of core-state-aware power gating to-date is 
the Router Parking technique, which provides core power state 
information in power-gating mesh networks [10]. However, con-
ventional mesh-based NoC topologies have limited ability in uti-
lizing core status to reduce NoC power, as many routers that are 
attached to the sleeping cores must be turned on to provide full 
connectivity and reduce packet latency to an acceptable range.  

The inherent topological limitation of mesh networks prompts us 
to look at other topologies that have richer connectivity. One such 
topology is high-radix networks that have express channels added 
to tile-based NoCs [5][6]. In particular, the flattened butterfly 
topology [5], uses express channels as shortcuts to connect direct-
ly the non-neighboring tiles on the same row or column, thus by-
passing intermediate routers and accelerating packet transfer. 
Figure 1(b) shows an example of a 4x4 flattened butterfly net-
work, in comparison to a 4x4 mesh network in Figure 1(a). Due to 
its superior connectivity, flattened butterfly is very suitable for 
core-state-aware power gating, as the number of routers that need 
to be powered on to guarantee connectivity is much smaller than 
in meshes (more details in Section 2.2). 

To this end, we propose Smart Butterfly, a novel NoC power gat-
ing scheme that exploits the potential of power gating in flattened 
butterfly NoCs, and utilizes core-state-awareness to increase pow-
er-saving effectiveness. Specifically, we first prove the minimal 
number of routers that need to be powered on in flattened butter-
flies to ensure full connectivity of a given set of active cores. We 
then reduce packet latency without increasing much power over-
head by selectively turning on additional routers. Two heuristic 
algorithms are proposed to solve the problem. We show that the 
two algorithms are able to achieve near-optimal results. With 
these algorithms, Smart Butterfly is able to achieve a wide range 
of power-latency trade-offs by varying the number of ON routers. 

2. PRELIMINARIES 
2.1 NoC Power Gating Techniques 
Power gating is an effective technique to reduce static power con-
sumption, especially for components with sufficiently long idle 
periods. Recent research has started to apply power gating to on-
chip routers. Matsutani, et al., propose look-ahead technique to 

Figure 1. On-chip network topologies. 
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reduce run-time power consumption and wake-up latency [9]. 
Chen, et al., present a mesh-based NoC architecture with a bypass 
channel which allows more sleeping routers and smaller latency 
penalty [2]. In addition, a Clos NoC based power-gating scheme 
[3] and a multiple network based scheme [4] have been proposed 
to increase power-gating opportunity. However, these works be-
long to traffic-oriented power gating approaches and cannot ex-
ploit the long idle period of sleeping cores. Samih, et al., propose 
a novel NoC power gating technique, namely Router Parking, 
which shuts off selected routers attached to sleeping cores to 
achieve low NoC power consumption [10]. However, as discussed 
in detail later, the power efficiency of Router Parking deployment 
is largely restrained by the underlying mesh topology, and the 
adopted algorithms suffer unstable results due to randomness and 
lack the flexibility to trade-off between power and performance. 

2.2 Connectivity Analysis 
A key challenge to enable core-state-aware power gating is to 
ensure the connectivity of all active cores while minimizing the 
set of routers that needs to be powered on. Although the Router 
Parking work shows that the mesh is a viable candidate to allow 
some routers to be powered-off without disconnecting cores, flat-
tened butterfly networks require much fewer powered-on routers 
due to their rich connectivity. 

We first identify the minimal number of routers that need to be 
powered on additionally in flattened butterfly to ensure full con-
nectivity of a given set of active cores. 

Theorem: In a flattened butterfly network, in which the set of 
routers attached to the active cores form ܭ connected components, 
full connectivity of all ܭ components can be maintained only if a 
minimum of ሺܭ െ 1ሻ additional routers are powered on. 

Proof sketch: The proof consists of the following two parts: 

1) Full connectivity => At least ሺܭ െ 1ሻ additional routers. 

In a flattened butterfly, all active routers in a row (or in a column) 
are already connected and are in the same component. For a sleep-
ing router on the ݅-th row and ݆-th column, it can merge at most 
two components if turned on, one comprised of all the active rout-
ers on the ݅-th row and the other formed by all the active routers 
on the ݆-th column. This means that turning on one sleeping router 
can reduce the number of components by no more than one. 
Therefore, by induction, at least ሺܭ െ 1ሻ additional routers exist 
in powered-on state to connect ܭ components and hence maintain 
full connectivity of all active cores. 

2) The boundary case of ሺܭ െ 1ሻ additional routers is achievable. 

We start from connecting two components. Assume ܣ and ܤ are 
two components. There exists at least one sleeping router which 
will connect ܣ and ܤ if turned on. We can turn on this router to 
merge ܣ and ܤ. Repeat this step ሺܭ െ 1ሻ times and we can con-
nect all ܭ components with ሺܭ െ 1ሻ additional routers.        ∎ 

While this theorem states that a selective set of ሺܭ െ 1ሻ additional 
routers is needed, there are different ways of choosing these rout-
ers, leading to different paths and varying packet latency among 
cores. Moreover, it may be beneficial to turn on extra routers be-
sides the ሺܭ െ 1ሻ routers to further reduce average packet latency. 
Therefore, we focus on this more complex but more important 
problem and present two efficient algorithms to solve it. 

3. PROBLEM STATEMENT 
Before presenting the problem formulation, we first describe the 
network topology as well as the packet latency model used. 

An ݊ by ݉ flattened butterfly network is defined as a grid with ݊ 
rows and ݉ columns. There is a core with a router attached to it 
on each grid point, making ܰ ≜ ݊ ൈ݉  cores (and routers) in 

total. All the routers on the same row or column are directly con-
nected by a physical link between them. 

Each core in the network can be either active or in sleep state. Let 
ܿ௜ ൌ 1  denote core ݅  is active and ܿ௜ ൌ 0  otherwise. The set 
ܥ ≜ ሼ݅|ܿ௜ ൌ 1ሽ is the set of all active cores in the network. Simi-
larly, let ݏ௜ ൌ 1 denote router ݅  (which is attached to core ݅ ) is 
active and ݏ௜ ൌ 0 otherwise, and ܵ ≜ ሼ݅|ݏ௜ ൌ 1ሽ is the set of all 
active routers in the network. As a router cannot be put to sleep 
state if the corresponding core is in the active state, the following 
constraint exists, 

௜ݏ ൒ ܿ௜, ∀݅ ∈ ሼ1, … , ܰሽ (1)  

For each pair of active cores ሺ݅, ݆ሻ, let ݎ௜,௝ denote the communica-
tion load rate, and ݀௜,௝ denote the communication latency between 
them. Assuming minimal routing which forwards packets on the 
shortest paths, we can compute the communication latency ݀௜,௝ by 

݀௜,௝ሺܵሻ ൌ ൫ܪ௜,௝ሺܵሻ ൅ 1൯ ∙ ሺ ோܶ ൅ ௖ሻݐ ൅ ௜,௝ሺܵሻܮ ∙ ௅ܶ ൅ ௌܶ (2)  

where ܪ௜,௝ሺܵሻ  and ܮ௜,௝ሺܵሻ  are the number of hops and the link 
length (in terms of how many unit lengths), respectively, on the 
shortest path between router ݅ and ݆ with given active router set ܵ. 
ோܶ is the router pipeline latency, typically 2-4 cycles. ݐ௖ is the per 

hop contention latency. ௅ܶ is the unit length link latency, typically 
1 cycle. ௌܶ  is the serialization latency, which is the quotient of 
packet size and link bandwidth. 

The goal of the proposed Smart Butterfly scheme is to determine 
the best active router set ܵ  based on the knowledge of current 
active cores ܥ and communication rates ݎ௜,௝ . The objective is to 
minimize the average packet latency ܮܲܣ, calculated by 

ܮܲܣ ൌ
∑ ݀௜,௝ሺܵሻ ∙ ௜,௝௜,௝∈஼ݎ

∑ ௜,௝௜,௝∈஼ݎ
 

(3)  

subject to the maximum number of active routers ܵ௠௔௫, i.e., 
|ܵ| ൑ ܵ௠௔௫ (4)  

It is impractical to enumerate all the possible solutions of the 
above problem when 	ܰ is large. Therefore we propose two effi-
cient heuristic algorithms, both having near-optimal performance 
and polynomial-time complexity. 

4. PROPOSED ALGORITHMS 
4.1 Exact Cost-Based Approach 
The first algorithm is an exact cost-based approach, which starts 
from the state that only the routers connected to active cores are 
ON, and then turns on other routers one by one as needed. At each 
step when we determine which router to turn on, and choose the 
one that minimizes ܮܲܣ. The pseudo code is given below: 

Algorithm Input: ݊, ݉, ݎ ,ܥ௜,௝, ܵ௠௔௫ 

Initialize ܽܿܵ݁ݒ݅ݐ ൌ ,ܥ ܵ݌݈݁݁ݏ ൌ ሼ1,… , ܰሽ െ  ܵ݁ݒ݅ݐܿܽ
For ݇ from |ܥ| ൅ 1 to ܵ௠௔௫ // Turn on routers one by one 
ܮܲܣ݊݅݉     ൌ ∞ 
    For ݏ in ܵ݌݈݁݁ݏ 
ܵ݁ݒ݅ݐܿܽ         ൌ ܵ݁ݒ݅ݐܿܽ ∪ ሼݏሽ 
        Compute ܮܲܣ using equation (3) 
        If ܮܲܣ ൏  ܮܲܣ݊݅݉
ܮܲܣ݊݅݉             ൌ ,ܮܲܣ ݏ݊݅݉ ൌ  ݏ
ܵ݁ݒ݅ݐܿܽ         ൌ  ሽݏሼ/ܵ݁ݒ݅ݐܿܽ
ܵ݁ݒ݅ݐܿܽ     ൌ ܵ݁ݒ݅ݐܿܽ ∪ ሼ݉݅݊ݏሽ 
ܵ݌݈݁݁ݏ     ൌ ܵ݌݈݁݁ݏ െ ሼ݉݅݊ݏሽ 
Return 

We assume ݐ௖ is a small fixed value to compute ܮܲܣ in designing 
the heuristics. It is also worth mentioning that we define ݀௜,௝ to be 
a finite large number (e.g., 104) instead of ∞ in the algorithm if 
router ݅ and ݆ are not connected to each other yet.  

Computing ܮܲܣ  in the algorithm involves solving an all-pairs 
shortest path problem. Our implementation has a runtime of 



ܱሺܰସሻ by bookkeeping ݀௜,௝ሺܽܿܵ݁ݒ݅ݐሻ. When router ݏ is added to 
 .ሻ in ܱሺܰଶሻ timeܵ݁ݒ݅ݐwe can update ݀௜,௝ሺܽܿ ,ܵݐ݊݁ݎݎݑܿ

4.2 Merit Value-Based Approach 
In case ܱሺܰସሻ time complexity is still not fast enough for online 
implementation, we propose a faster algorithm, namely the merit 
value-based algorithm with ܱሺܰଶሻ  time complexity. Similar to 
the exact cost-based approach, the merit value-based approach 
turns on routers one by one. At each step of deciding which router 
to turn on, we first consider the routers that can connect two com-
ponents, with the help of a disjoint set. If there is a tie (i.e., either 
multiple or no routers that can connect two components), we use a 
pre-computed merit value associated with each router as tie-
breakers. The merit value of a router serves as a rough approxima-
tion of the reward of turning on that router. The merit value of 
router ݏ is computed as the sum of communication rate ݎ௜,௝ where 
router ݅ and router ݆ are not directly connected to each other but 
are both directly connected to router ݏ (so that they become con-
nected if router s is turned on). When a sleeping router is turned 
on, the merit values of other routers are updated accordingly.  

The pseudo code is given below: 

Algorithm Input: ݊, ݉, ݎ ,ܥ௜,௝, ܵ௠௔௫ 

Initialize ܽܿܵ݁ݒ݅ݐ ൌ ,ܥ ܵ݌݈݁݁ݏ ൌ ሼ1,… , ܰሽ െ  ܵ݁ݒ݅ݐܿܽ
Initialize ݉݁ݐ݅ݎ ൌ ૙ 
Initialize disjoint-set ܵܦ ൌ ሼܴݓ݋ଵ,… , ௡ሽݓ݋ܴ ∪ ሼ݈݋ܥଵ, … ,  ௠ሽ݈݋ܥ
For ܿଵ in ܥ  // Compute merit values 
    For ܿଶ in ܥ 
        If ܿଵ and ܿଶ are not on the same row or column 
ଵݏ             ൌrouter at ܿଵ. .and ܿଶ ݓ݋ݎ  ݊݉ݑ݈݋ܿ
ଶݏ             ൌrouter at ܿଶ. .and ܿଵ ݓ݋ݎ  ݊݉ݑ݈݋ܿ
ଵሻ൅ൌݏሺݐ݅ݎ݁݉             ଶሻ൅ൌݏሺݐ݅ݎ݁݉ ,௖ଵ,௖ଶݎ  ௖ଵ,௖ଶݎ

For ݏ in ܽܿܵ݁ݒ݅ݐ  // Update disjoint-set 
.ܵܦ     .ݏሺ݊݋݅݊ݑ ,ݓ݋ݎ .ݏ  ሻ݊݉ݑ݈݋ܿ
For ݇ from |ܥ| ൅ 1 to ܵ௠௔௫ // Turn on routers one by one 
ݏݔܽ݉     ൌ െ1, ݉ܽݐ݅ݎ݁ܯݔ ൌ െ∞, ܿ݀݁ݐܿ݁݊݊݋ ൌ  ݁ݑݎݐ
    For ݏ in ܵ݌݈݁݁ݏ 
        If ܵܦ. ݂݅݊݀ሺݏ. ,ݓ݋ݎ .ݏ ሻ݊݉ݑ݈݋ܿ ൌ  ݁ݏ݈݂ܽ
            // Router ݏ connects two components 
            If ܿ݀݁ݐܿ݁݊݊݋ 
ݏݔܽ݉                 ൌ ݐ݅ݎ݁ܯݔܽ݉,ݏ ൌ ݀݁ݐܿ݁݊݊݋ܿ,ሻݏሺݐ݅ݎ݁݉ ൌ  ݁ݏ݈݂ܽ
            Else If ݉݁ݐ݅ݎሺݏሻ ൐  ݐ݅ݎ݁ܯݔܽ݉
ݏݔܽ݉                 ൌ ݐ݅ݎ݁ܯݔܽ݉ ,ݏ ൌ  ሻݏሺݐ݅ݎ݁݉
        Else If ܿ݀݁ݐܿ݁݊݊݋ And ݉݁ݐ݅ݎሺݏሻ ൐  ݐ݅ݎ݁ܯݔܽ݉
ݏݔܽ݉             ൌ ݐ݅ݎ݁ܯݔܽ݉ ,ݏ ൌ  ሻݏሺݐ݅ݎ݁݉
.ܵܦ     .ݏݔሺ݉ܽ݊݋݅݊ݑ .ݏݔܽ݉,ݓ݋ݎ  ሻ݈݋ܿ
ܵ݁ݒ݅ݐܿܽ     ൌ ܵ݁ݒ݅ݐܿܽ ∪ ሼ݉ܽݏݔሽ 
ܵ݌݈݁݁ݏ     ൌ ܵ݌݈݁݁ݏ െ ሼ݉ܽݏݔሽ 
    For ݏ in ܵ݌݈݁݁ݏ  // Update merit values 
        If ݏ and ݉ܽݏݔ are not on the same row or column 
            ܿଵ ൌcore at ݏ. .ݏݔܽ݉ and ݓ݋ݎ  ݊݉ݑ݈݋ܿ
            ܿଶ ൌcore at ݉ܽݏݔ. .ݏ and ݓ݋ݎ  ݊݉ݑ݈݋ܿ
ሻെൌݏሺݐ݅ݎ݁݉              ௖ଵ,௖ଶݎ
Return 
We use an array-based disjoint-set implementation whose find 
operation has ܱሺ1ሻ  time complexity and union operation has 
ܱሺ݊ ൅ ݉ሻ  time complexity. As computing and updating merit 
values take ܱሺܰଶሻ time, the overall time complexity is ܱሺܰଶሻ, 
which is much smaller than that of the exact cost-based approach. 

5. SIMULATION RESULTS 

5.1 Simulation Setup 
In the simulation, the proposed Smart Butterfly is evaluated on 
both 4x4 and 8x8 flattened butterfly (FB) networks with real ap-
plication traces including four MPSoC traces (namely mms2, 
mpeg4, toybox, and vopd_t) and eight CMP traces (referred to as 
spec1~4 for 4x4 network and spec5~8 for 8x8 network). The 

MPSoC traces are collected from 12 to 16-core real applications. 
For 4x4 networks, the application traces are concentrated onto 3 
to 4-core traces to form the active core set. The CMP traces are 
synthesized based on the memory and cache access traffic from a 
subset of SPEC benchmarks. Cores of all the test traces are ran-
domly mapped to the NoC tiles. 

We compare the following eight schemes, including both aggres-
sive and conservative algorithms proposed in the Router Parking 
work [10] (these algorithms can be applied to FB as well): 

1. Mesh_BB: A branch and bound algorithm on mesh network 
that minimizes ܮܲܣ at given maximum number of ON routers 

2. Mesh_RPA: Router Parking – Aggressive on mesh network 
3. Mesh_RPC: Router Parking – Conservative on mesh network 
4. FB_BB: A branch and bound algorithm on FB that minimizes 

 at given maximum number of ON routers ܮܲܣ
5. FB_RPA: Router Parking – Aggressive on FB 
6. FB_RPC:  Router Parking – Conservative on FB 
7. FB_EC: The proposed exact cost-based approach on FB 
8. FB_MV: The proposed merit value-based approach on FB 

The network configurations in the simulation are listed in Table 1. 
Based on a previous study [7], the on-chip traffic is composed of 
approximately 80% short packets and 20% long packets. For fair 
comparison, both mesh and flattened butterfly networks have the 
same total buffer size in number of bits and the same total bisec-
tion bandwidth (so the individual link width of FB is narrower 
than that of mesh). 

The ܮܲܣs are computed based on Equation (3). For each of the 
test case, the per-hop contention latency ݐ௖ is acquired by feeding 
the trace into Garnet, a cycle-accurate NoC simulator [1]. NoC 
power (comprised of router power and link power) is calculated 
by the NoC power model DSENT [11] with 32nm technology.  

5.2 Simulation Results 

5.2.1 Power-Latency Trade-offs 
Figure 2 shows the simulation results of the five algorithms on 
flattened butterfly (aforesaid Schemes 4-8) in the form of trade-
off curves between overall NoC power and average APL. Only 
two 4x4 and two 8x8 test cases are shown due to lack of space.  

As shown in the figure, the trade-off curves of the two proposed 
heuristic algorithms are close to the optimal curve of branch and 
bound-based algorithm on 4x4 network. The branch and bound 
result is not shown for 8x8 network because it did not finish in a 
reasonable time period. Compared with Router Parking, we can 
see that at the same level of power consumption, FB_EC and 
FB_MV achieve 13% and 12% lower ܮܲܣs on average, respec-
tively, compared to FB_RPA. At the same level of ܮܲܣ, FB_EC 
and FB_MV save 28% and 27% of NoC power consumption on 
average, respectively, compared to FB_RPC.  

It is worth mentioning that, the proposed FB_EC and FB_MV can 
produce a range of power-latency trade-off points that can be used 
by system operators under different constraints and scenarios. 

5.2.2 Comparison of Eight Schemes 
Figure 3 and Figure 4 compare the minimal NoC power consump-
tion (left y-axis and the bars) that can be achieved by each of the 

Table 1. Simulated network configurations. 
Traffic 64-bit (80%) and 512-bit (20%) packets 
Network Size 4x4 8x8 
Network Type Mesh FB Mesh FB 
Link Width (bit) 512 128 512 32 
Average 4.8 1 1.6 1 ࡿࢀ 
 3 3 3 3 ࡾࢀ
 1 1 1 1 ࡸࢀ
Router Radix 5 7 5 15 



eight schemes (x-axis), and the corresponding average packet 
latency (right y-axis and the curves) for different test cases. As 
can be seen, the power and latency results for FB_EC and 
FB_MV are very similar to those of FB_BB, demonstrating the 
effectiveness of the two proposed heuristic algorithms. 

In addition, the proposed FB_EC and FB_MV schemes are con-
siderably better than the mesh-based schemes in both power and 
latency. For example, FB_EC achieves on average 42.85% and 
60.48% less NoC power consumption compared to the best results 
on 4x4 and 8x8 mesh network, respectively. This advantage main-
ly comes from two aspects. First, each router in the flattened but-
terfly (higher radix but narrower width) consumes less power 
compared to mesh routers (around 16% and 29% on 4x4 and 8x8 
networks at the same injection rate, respectively). Second, the 
proposed algorithms can utilize the express channels in the flat-
tened butterfly to maintain connectivity of active cores while al-
lowing more routers to be powered off, thus having more power 
savings and less detours than the mesh. Note that although the 
serialization latency in flattened butterfly is slightly higher than in 
mesh, the reduced detours and the use of express channels in FB 
lead to much lower average packet latency than mesh. 

5.2.3 Dynamic Power vs. Static Power 
Figure 3 and Figure 4 also show the relative percentages between 
dynamic power and static power, which varies among different 
workloads. Overall, the static power percentage in flattened but-
terfly networks is slightly higher than that in mesh. This is be-
cause flattened butterflies have a smaller average hop count than 
meshes. In other words, packets in the flattened butterfly are for-
warded through fewer routers, resulting in lower dynamic power 
and lower average injection rate per router. Table 2 shows the 
toybox example. As can be seen, when the same workload is exe-
cuted on mesh and flattened butterfly, the static power percentage 
can be different due to the change in hop count and average injec-
tion rate. However, even if this relative static power percentage is 
higher in flattened butterfly, the absolute value of static power 
consumption of FB is still much lower than that of the mesh. 

Table 2. Avg. hop count, inj. rate and static power percentage. 

Test Case 
Mesh FB

Hop  Inj. Rate Static % Hop  Inj. Rate Static %
toybox(4x4) 2.93 0.28 55 2.22 0.23 69
toybox(8x8) 7.73 0.24 59 3.51 0.18 76

6. CONCLUSION 
In this paper, we propose Smart Butterfly, an effective NoC pow-
er-gating scheme that applies core-state-awareness to flattened 
butterfly networks. Smart Butterfly exploits the rich connectivity 
of flattened butterfly networks, and selectively powers off routers 
attached to sleeping cores to save more power. Furthermore, it 
achieves a wide range of power-latency trade-offs by adjusting the 
number of ON routers. We propose two heuristic algorithms to 
implement Smart Butterfly with different complexity and perfor-
mance. Simulation results show that the two heuristic algorithms 
are able to achieve near-optimal solutions with low complexity, 
resulting in 42.85% and 60.48% less power consumption, on av-
erage, on 4x4 and 8x8 networks compared to a recently proposed 
mesh-based technique, respectively. 
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Figure 3. 4x4 results: (1-3) Mesh_BB, Mesh_RPA, Mesh_RPC, (4-5) FB_RPA, FB_RPC, (6-8) FB_BB, FB_EC, FB_MV 

Figure 4. 8x8 results: (1-2) Mesh_RPA, Mesh_RPC, (3-4) FB_RPA, FB_RPC, (5-6) FB_EC, FB_MV 

 
Figure 2. Tradeoff curves between overall NoC power and average packet latency. 
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