
Smart Butterfly: Reducing Static Power Dissipation of
Network-on-Chip with Core-State-Awareness

Siyu Yue, Lizhong Chen, Di Zhu, Timothy M. Pinkston, and Massoud Pedram
Ming Hsieh Department of Electrical Engineering

University of Southern California
Email: {siyuyue, lizhongc, dizhu, tpink, pedram}@usc.edu

ABSTRACT
While power gating is a promising technique to reduce the static
power consumption of network-on-chip (NoC), its effectiveness is
often hindered by the requirement of maintaining network connec-
tivity and the limited knowledge of traffic behaviors. In this paper,
we present Smart Butterfly, a core-state-aware NoC power-gating
scheme based on flattened butterfly that utilizes the active/sleep
state information of processing cores to improve power-gating
effectiveness. Smart Butterfly exploits the rich connectivity of the
flattened butterfly topology to allow more on-chip routers to be
power-gated when their attached cores are asleep. We present two
heuristic algorithms to determine the set of routers to be turned on
to maintain connectivity and allow tradeoff between power con-
sumption and average packet latency. Simulation results show an
average of 42.85% and 60.48% power reduction of Smart Butter-
fly over prior art on 4x4 and 8x8 networks, respectively.

Keywords
Network-on-chip, power-gating, flattened butterfly.

1. INTRODUCTION
Networks-on-chip (NoCs) have been proposed as a key compo-
nent in many-core systems such as chip-multiprocessors (CMPs)
and multiprocessor system-on-chips (MPSoCs). Compared with
traditional bus structures, the relatively complex NoCs with rout-
ers and links can draw a substantial percentage of chip power
[2][3][4][10]. This is particularly true as cores are often under-
utilized and therefore put into low-power sleep states (10–50%
average utilization [8]).

An effective approach to reduce NoC power consumption is to
apply power gating techniques. Most state-of-the-art NoC power
gating schemes are traffic-oriented, in which routers are power
gated when there is no traffic that needs to go through the routers
[9]. However, the traffic-oriented power gating strategies use only
traffic information and are unable to take full advantage of inac-
tive cores. For example, even if a core is in sleep state and, thus,
has no incoming or outgoing packets, its attached router cannot
stay power-gated for long. This is because the router must be
awoken intermittently to forward the passing packets to support
communication of other active cores. In typical applications, the
length of router idle periods is in the order of tens to hundreds of
cycles – short enough to cause frequent wakeups and the associat-
ed energy overhead.

A new approach, which we refer to as core-state-aware power
gating, aims to save more static power by enhancing NoCs with
information of core states to make better power gating decisions.
To be specific, some routers that are attached to the sleeping cores

stay power-gated until the cores become active. Any traffic that
would go through the sleeping routers is detoured. As the sleep
periods of cores are in the order of several milliseconds [8], this
approach allows routers to be turned off for a much longer time
compared to the traffic-oriented approach. Note that not all of the
routers attached to sleeping cores can be turned off as the network
must maintain full connectivity of the active cores. In some cases,
it may even need to turn on additional routers than the minimally
required in order to reduce detoured traffic, and therefore reduce
packet latency.

The closest example of core-state-aware power gating to-date is
the Router Parking technique, which provides core power state
information in power-gating mesh networks [10]. However, con-
ventional mesh-based NoC topologies have limited ability in uti-
lizing core status to reduce NoC power, as many routers that are
attached to the sleeping cores must be turned on to provide full
connectivity and reduce packet latency to an acceptable range.

The inherent topological limitation of mesh networks prompts us
to look at other topologies that have richer connectivity. One such
topology is high-radix networks that have express channels added
to tile-based NoCs [5][6]. In particular, the flattened butterfly
topology [5], uses express channels as shortcuts to connect direct-
ly the non-neighboring tiles on the same row or column, thus by-
passing intermediate routers and accelerating packet transfer.
Figure 1(b) shows an example of a 4x4 flattened butterfly net-
work, in comparison to a 4x4 mesh network in Figure 1(a). Due to
its superior connectivity, flattened butterfly is very suitable for
core-state-aware power gating, as the number of routers that need
to be powered on to guarantee connectivity is much smaller than
in meshes (more details in Section 2.2).

To this end, we propose Smart Butterfly, a novel NoC power gat-
ing scheme that exploits the potential of power gating in flattened
butterfly NoCs, and utilizes core-state-awareness to increase pow-
er-saving effectiveness. Specifically, we first prove the minimal
number of routers that need to be powered on in flattened butter-
flies to ensure full connectivity of a given set of active cores. We
then reduce packet latency without increasing much power over-
head by selectively turning on additional routers. Two heuristic
algorithms are proposed to solve the problem. We show that the
two algorithms are able to achieve near-optimal results. With
these algorithms, Smart Butterfly is able to achieve a wide range
of power-latency trade-offs by varying the number of ON routers.

2. PRELIMINARIES
2.1 NoC Power Gating Techniques
Power gating is an effective technique to reduce static power con-
sumption, especially for components with sufficiently long idle
periods. Recent research has started to apply power gating to on-
chip routers. Matsutani, et al., propose look-ahead technique to

Figure 1. On-chip network topologies.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ISLPED'14, August 11–13, 2014, La Jolla, CA, USA.
Copyright © 2014 ACM 978-1-4503-2975-0/14/08...$15.00.
http://dx.doi.org/10.1145/2627369.2627663

reduce run-time power consumption and wake-up latency [9].
Chen, et al., present a mesh-based NoC architecture with a bypass
channel which allows more sleeping routers and smaller latency
penalty [2]. In addition, a Clos NoC based power-gating scheme
[3] and a multiple network based scheme [4] have been proposed
to increase power-gating opportunity. However, these works be-
long to traffic-oriented power gating approaches and cannot ex-
ploit the long idle period of sleeping cores. Samih, et al., propose
a novel NoC power gating technique, namely Router Parking,
which shuts off selected routers attached to sleeping cores to
achieve low NoC power consumption [10]. However, as discussed
in detail later, the power efficiency of Router Parking deployment
is largely restrained by the underlying mesh topology, and the
adopted algorithms suffer unstable results due to randomness and
lack the flexibility to trade-off between power and performance.

2.2 Connectivity Analysis
A key challenge to enable core-state-aware power gating is to
ensure the connectivity of all active cores while minimizing the
set of routers that needs to be powered on. Although the Router
Parking work shows that the mesh is a viable candidate to allow
some routers to be powered-off without disconnecting cores, flat-
tened butterfly networks require much fewer powered-on routers
due to their rich connectivity.

We first identify the minimal number of routers that need to be
powered on additionally in flattened butterfly to ensure full con-
nectivity of a given set of active cores.

Theorem: In a flattened butterfly network, in which the set of
routers attached to the active cores form ܭ connected components,
full connectivity of all ܭ components can be maintained only if a
minimum of ሺܭ െ 1ሻ additional routers are powered on.

Proof sketch: The proof consists of the following two parts:

1) Full connectivity => At least ሺܭ െ 1ሻ additional routers.

In a flattened butterfly, all active routers in a row (or in a column)
are already connected and are in the same component. For a sleep-
ing router on the ݅-th row and ݆-th column, it can merge at most
two components if turned on, one comprised of all the active rout-
ers on the ݅-th row and the other formed by all the active routers
on the ݆-th column. This means that turning on one sleeping router
can reduce the number of components by no more than one.
Therefore, by induction, at least ሺܭ െ 1ሻ additional routers exist
in powered-on state to connect ܭ components and hence maintain
full connectivity of all active cores.

2) The boundary case of ሺܭ െ 1ሻ additional routers is achievable.

We start from connecting two components. Assume ܣ and ܤ are
two components. There exists at least one sleeping router which
will connect ܣ and ܤ if turned on. We can turn on this router to
merge ܣ and ܤ. Repeat this step ሺܭ െ 1ሻ times and we can con-
nect all ܭ components with ሺܭ െ 1ሻ additional routers. ∎

While this theorem states that a selective set of ሺܭ െ 1ሻ additional
routers is needed, there are different ways of choosing these rout-
ers, leading to different paths and varying packet latency among
cores. Moreover, it may be beneficial to turn on extra routers be-
sides the ሺܭ െ 1ሻ routers to further reduce average packet latency.
Therefore, we focus on this more complex but more important
problem and present two efficient algorithms to solve it.

3. PROBLEM STATEMENT
Before presenting the problem formulation, we first describe the
network topology as well as the packet latency model used.

An ݊ by ݉ flattened butterfly network is defined as a grid with ݊
rows and ݉ columns. There is a core with a router attached to it
on each grid point, making ܰ ≜ ݊ ൈ݉ cores (and routers) in

total. All the routers on the same row or column are directly con-
nected by a physical link between them.

Each core in the network can be either active or in sleep state. Let
ܿ௜ ൌ 1 denote core ݅ is active and ܿ௜ ൌ 0 otherwise. The set
ܥ ≜ ሼ݅|ܿ௜ ൌ 1ሽ is the set of all active cores in the network. Simi-
larly, let ݏ௜ ൌ 1 denote router ݅ (which is attached to core ݅) is
active and ݏ௜ ൌ 0 otherwise, and ܵ ≜ ሼ݅|ݏ௜ ൌ 1ሽ is the set of all
active routers in the network. As a router cannot be put to sleep
state if the corresponding core is in the active state, the following
constraint exists,

௜ݏ ൒ ܿ௜, ∀݅ ∈ ሼ1, … , ܰሽ (1)

For each pair of active cores ሺ݅, ݆ሻ, let ݎ௜,௝ denote the communica-
tion load rate, and ݀௜,௝ denote the communication latency between
them. Assuming minimal routing which forwards packets on the
shortest paths, we can compute the communication latency ݀௜,௝ by

݀௜,௝ሺܵሻ ൌ ൫ܪ௜,௝ሺܵሻ ൅ 1൯ ∙ ሺ ோܶ ൅ ௖ሻݐ ൅ ௜,௝ሺܵሻܮ ∙ ௅ܶ ൅ ௌܶ (2)

where ܪ௜,௝ሺܵሻ and ܮ௜,௝ሺܵሻ are the number of hops and the link
length (in terms of how many unit lengths), respectively, on the
shortest path between router ݅ and ݆ with given active router set ܵ.
ோܶ is the router pipeline latency, typically 2-4 cycles. ݐ௖ is the per

hop contention latency. ௅ܶ is the unit length link latency, typically
1 cycle. ௌܶ is the serialization latency, which is the quotient of
packet size and link bandwidth.

The goal of the proposed Smart Butterfly scheme is to determine
the best active router set ܵ based on the knowledge of current
active cores ܥ and communication rates ݎ௜,௝ . The objective is to
minimize the average packet latency ܮܲܣ, calculated by

ܮܲܣ ൌ
∑ ݀௜,௝ሺܵሻ ∙ ௜,௝௜,௝∈஼ݎ

∑ ௜,௝௜,௝∈஼ݎ

(3)

subject to the maximum number of active routers ܵ௠௔௫, i.e.,
|ܵ| ൑ ܵ௠௔௫ (4)

It is impractical to enumerate all the possible solutions of the
above problem when 	ܰ is large. Therefore we propose two effi-
cient heuristic algorithms, both having near-optimal performance
and polynomial-time complexity.

4. PROPOSED ALGORITHMS
4.1 Exact Cost-Based Approach
The first algorithm is an exact cost-based approach, which starts
from the state that only the routers connected to active cores are
ON, and then turns on other routers one by one as needed. At each
step when we determine which router to turn on, and choose the
one that minimizes ܮܲܣ. The pseudo code is given below:

Algorithm Input: ݊, ݉, ݎ ,ܥ௜,௝, ܵ௠௔௫

Initialize ܽܿܵ݁ݒ݅ݐ ൌ ,ܥ ܵ݌݈݁݁ݏ ൌ ሼ1,… , ܰሽ െ ܵ݁ݒ݅ݐܿܽ
For ݇ from |ܥ| ൅ 1 to ܵ௠௔௫ // Turn on routers one by one
ܮܲܣ݊݅݉ ൌ ∞
 For ݏ in ܵ݌݈݁݁ݏ
ܵ݁ݒ݅ݐܿܽ ൌ ܵ݁ݒ݅ݐܿܽ ∪ ሼݏሽ
 Compute ܮܲܣ using equation (3)
 If ܮܲܣ ൏ ܮܲܣ݊݅݉
ܮܲܣ݊݅݉ ൌ ,ܮܲܣ ݏ݊݅݉ ൌ ݏ
ܵ݁ݒ݅ݐܿܽ ൌ ሽݏሼ/ܵ݁ݒ݅ݐܿܽ
ܵ݁ݒ݅ݐܿܽ ൌ ܵ݁ݒ݅ݐܿܽ ∪ ሼ݉݅݊ݏሽ
ܵ݌݈݁݁ݏ ൌ ܵ݌݈݁݁ݏ െ ሼ݉݅݊ݏሽ
Return

We assume ݐ௖ is a small fixed value to compute ܮܲܣ in designing
the heuristics. It is also worth mentioning that we define ݀௜,௝ to be
a finite large number (e.g., 104) instead of ∞ in the algorithm if
router ݅ and ݆ are not connected to each other yet.

Computing ܮܲܣ in the algorithm involves solving an all-pairs
shortest path problem. Our implementation has a runtime of

ܱሺܰସሻ by bookkeeping ݀௜,௝ሺܽܿܵ݁ݒ݅ݐሻ. When router ݏ is added to
 .ሻ in ܱሺܰଶሻ timeܵ݁ݒ݅ݐwe can update ݀௜,௝ሺܽܿ ,ܵݐ݊݁ݎݎݑܿ

4.2 Merit Value-Based Approach
In case ܱሺܰସሻ time complexity is still not fast enough for online
implementation, we propose a faster algorithm, namely the merit
value-based algorithm with ܱሺܰଶሻ time complexity. Similar to
the exact cost-based approach, the merit value-based approach
turns on routers one by one. At each step of deciding which router
to turn on, we first consider the routers that can connect two com-
ponents, with the help of a disjoint set. If there is a tie (i.e., either
multiple or no routers that can connect two components), we use a
pre-computed merit value associated with each router as tie-
breakers. The merit value of a router serves as a rough approxima-
tion of the reward of turning on that router. The merit value of
router ݏ is computed as the sum of communication rate ݎ௜,௝ where
router ݅ and router ݆ are not directly connected to each other but
are both directly connected to router ݏ (so that they become con-
nected if router s is turned on). When a sleeping router is turned
on, the merit values of other routers are updated accordingly.

The pseudo code is given below:

Algorithm Input: ݊, ݉, ݎ ,ܥ௜,௝, ܵ௠௔௫

Initialize ܽܿܵ݁ݒ݅ݐ ൌ ,ܥ ܵ݌݈݁݁ݏ ൌ ሼ1,… , ܰሽ െ ܵ݁ݒ݅ݐܿܽ
Initialize ݉݁ݐ݅ݎ ൌ ૙
Initialize disjoint-set ܵܦ ൌ ሼܴݓ݋ଵ,… , ௡ሽݓ݋ܴ ∪ ሼ݈݋ܥଵ, … , ௠ሽ݈݋ܥ
For ܿଵ in ܥ // Compute merit values
 For ܿଶ in ܥ
 If ܿଵ and ܿଶ are not on the same row or column
ଵݏ ൌrouter at ܿଵ. .and ܿଶ ݓ݋ݎ ݊݉ݑ݈݋ܿ
ଶݏ ൌrouter at ܿଶ. .and ܿଵ ݓ݋ݎ ݊݉ݑ݈݋ܿ
ଵሻ൅ൌݏሺݐ݅ݎ݁݉ ଶሻ൅ൌݏሺݐ݅ݎ݁݉ ,௖ଵ,௖ଶݎ ௖ଵ,௖ଶݎ

For ݏ in ܽܿܵ݁ݒ݅ݐ // Update disjoint-set
.ܵܦ .ݏሺ݊݋݅݊ݑ ,ݓ݋ݎ .ݏ ሻ݊݉ݑ݈݋ܿ
For ݇ from |ܥ| ൅ 1 to ܵ௠௔௫ // Turn on routers one by one
ݏݔܽ݉ ൌ െ1, ݉ܽݐ݅ݎ݁ܯݔ ൌ െ∞, ܿ݀݁ݐܿ݁݊݊݋ ൌ ݁ݑݎݐ
 For ݏ in ܵ݌݈݁݁ݏ
 If ܵܦ. ݂݅݊݀ሺݏ. ,ݓ݋ݎ .ݏ ሻ݊݉ݑ݈݋ܿ ൌ ݁ݏ݈݂ܽ
 // Router ݏ connects two components
 If ܿ݀݁ݐܿ݁݊݊݋
ݏݔܽ݉ ൌ ݐ݅ݎ݁ܯݔܽ݉,ݏ ൌ ݀݁ݐܿ݁݊݊݋ܿ,ሻݏሺݐ݅ݎ݁݉ ൌ ݁ݏ݈݂ܽ
 Else If ݉݁ݐ݅ݎሺݏሻ ൐ ݐ݅ݎ݁ܯݔܽ݉
ݏݔܽ݉ ൌ ݐ݅ݎ݁ܯݔܽ݉ ,ݏ ൌ ሻݏሺݐ݅ݎ݁݉
 Else If ܿ݀݁ݐܿ݁݊݊݋ And ݉݁ݐ݅ݎሺݏሻ ൐ ݐ݅ݎ݁ܯݔܽ݉
ݏݔܽ݉ ൌ ݐ݅ݎ݁ܯݔܽ݉ ,ݏ ൌ ሻݏሺݐ݅ݎ݁݉
.ܵܦ .ݏݔሺ݉ܽ݊݋݅݊ݑ .ݏݔܽ݉,ݓ݋ݎ ሻ݈݋ܿ
ܵ݁ݒ݅ݐܿܽ ൌ ܵ݁ݒ݅ݐܿܽ ∪ ሼ݉ܽݏݔሽ
ܵ݌݈݁݁ݏ ൌ ܵ݌݈݁݁ݏ െ ሼ݉ܽݏݔሽ
 For ݏ in ܵ݌݈݁݁ݏ // Update merit values
 If ݏ and ݉ܽݏݔ are not on the same row or column
 ܿଵ ൌcore at ݏ. .ݏݔܽ݉ and ݓ݋ݎ ݊݉ݑ݈݋ܿ
 ܿଶ ൌcore at ݉ܽݏݔ. .ݏ and ݓ݋ݎ ݊݉ݑ݈݋ܿ
ሻെൌݏሺݐ݅ݎ݁݉ ௖ଵ,௖ଶݎ
Return
We use an array-based disjoint-set implementation whose find
operation has ܱሺ1ሻ time complexity and union operation has
ܱሺ݊ ൅ ݉ሻ time complexity. As computing and updating merit
values take ܱሺܰଶሻ time, the overall time complexity is ܱሺܰଶሻ,
which is much smaller than that of the exact cost-based approach.

5. SIMULATION RESULTS

5.1 Simulation Setup
In the simulation, the proposed Smart Butterfly is evaluated on
both 4x4 and 8x8 flattened butterfly (FB) networks with real ap-
plication traces including four MPSoC traces (namely mms2,
mpeg4, toybox, and vopd_t) and eight CMP traces (referred to as
spec1~4 for 4x4 network and spec5~8 for 8x8 network). The

MPSoC traces are collected from 12 to 16-core real applications.
For 4x4 networks, the application traces are concentrated onto 3
to 4-core traces to form the active core set. The CMP traces are
synthesized based on the memory and cache access traffic from a
subset of SPEC benchmarks. Cores of all the test traces are ran-
domly mapped to the NoC tiles.

We compare the following eight schemes, including both aggres-
sive and conservative algorithms proposed in the Router Parking
work [10] (these algorithms can be applied to FB as well):

1. Mesh_BB: A branch and bound algorithm on mesh network
that minimizes ܮܲܣ at given maximum number of ON routers

2. Mesh_RPA: Router Parking – Aggressive on mesh network
3. Mesh_RPC: Router Parking – Conservative on mesh network
4. FB_BB: A branch and bound algorithm on FB that minimizes

 at given maximum number of ON routers ܮܲܣ
5. FB_RPA: Router Parking – Aggressive on FB
6. FB_RPC: Router Parking – Conservative on FB
7. FB_EC: The proposed exact cost-based approach on FB
8. FB_MV: The proposed merit value-based approach on FB

The network configurations in the simulation are listed in Table 1.
Based on a previous study [7], the on-chip traffic is composed of
approximately 80% short packets and 20% long packets. For fair
comparison, both mesh and flattened butterfly networks have the
same total buffer size in number of bits and the same total bisec-
tion bandwidth (so the individual link width of FB is narrower
than that of mesh).

The ܮܲܣs are computed based on Equation (3). For each of the
test case, the per-hop contention latency ݐ௖ is acquired by feeding
the trace into Garnet, a cycle-accurate NoC simulator [1]. NoC
power (comprised of router power and link power) is calculated
by the NoC power model DSENT [11] with 32nm technology.

5.2 Simulation Results

5.2.1 Power-Latency Trade-offs
Figure 2 shows the simulation results of the five algorithms on
flattened butterfly (aforesaid Schemes 4-8) in the form of trade-
off curves between overall NoC power and average APL. Only
two 4x4 and two 8x8 test cases are shown due to lack of space.

As shown in the figure, the trade-off curves of the two proposed
heuristic algorithms are close to the optimal curve of branch and
bound-based algorithm on 4x4 network. The branch and bound
result is not shown for 8x8 network because it did not finish in a
reasonable time period. Compared with Router Parking, we can
see that at the same level of power consumption, FB_EC and
FB_MV achieve 13% and 12% lower ܮܲܣs on average, respec-
tively, compared to FB_RPA. At the same level of ܮܲܣ, FB_EC
and FB_MV save 28% and 27% of NoC power consumption on
average, respectively, compared to FB_RPC.

It is worth mentioning that, the proposed FB_EC and FB_MV can
produce a range of power-latency trade-off points that can be used
by system operators under different constraints and scenarios.

5.2.2 Comparison of Eight Schemes
Figure 3 and Figure 4 compare the minimal NoC power consump-
tion (left y-axis and the bars) that can be achieved by each of the

Table 1. Simulated network configurations.
Traffic 64-bit (80%) and 512-bit (20%) packets
Network Size 4x4 8x8
Network Type Mesh FB Mesh FB
Link Width (bit) 512 128 512 32
Average 4.8 1 1.6 1 ࡿࢀ
 3 3 3 3 ࡾࢀ
 1 1 1 1 ࡸࢀ
Router Radix 5 7 5 15

eight schemes (x-axis), and the corresponding average packet
latency (right y-axis and the curves) for different test cases. As
can be seen, the power and latency results for FB_EC and
FB_MV are very similar to those of FB_BB, demonstrating the
effectiveness of the two proposed heuristic algorithms.

In addition, the proposed FB_EC and FB_MV schemes are con-
siderably better than the mesh-based schemes in both power and
latency. For example, FB_EC achieves on average 42.85% and
60.48% less NoC power consumption compared to the best results
on 4x4 and 8x8 mesh network, respectively. This advantage main-
ly comes from two aspects. First, each router in the flattened but-
terfly (higher radix but narrower width) consumes less power
compared to mesh routers (around 16% and 29% on 4x4 and 8x8
networks at the same injection rate, respectively). Second, the
proposed algorithms can utilize the express channels in the flat-
tened butterfly to maintain connectivity of active cores while al-
lowing more routers to be powered off, thus having more power
savings and less detours than the mesh. Note that although the
serialization latency in flattened butterfly is slightly higher than in
mesh, the reduced detours and the use of express channels in FB
lead to much lower average packet latency than mesh.

5.2.3 Dynamic Power vs. Static Power
Figure 3 and Figure 4 also show the relative percentages between
dynamic power and static power, which varies among different
workloads. Overall, the static power percentage in flattened but-
terfly networks is slightly higher than that in mesh. This is be-
cause flattened butterflies have a smaller average hop count than
meshes. In other words, packets in the flattened butterfly are for-
warded through fewer routers, resulting in lower dynamic power
and lower average injection rate per router. Table 2 shows the
toybox example. As can be seen, when the same workload is exe-
cuted on mesh and flattened butterfly, the static power percentage
can be different due to the change in hop count and average injec-
tion rate. However, even if this relative static power percentage is
higher in flattened butterfly, the absolute value of static power
consumption of FB is still much lower than that of the mesh.

Table 2. Avg. hop count, inj. rate and static power percentage.

Test Case
Mesh FB

Hop Inj. Rate Static % Hop Inj. Rate Static %
toybox(4x4) 2.93 0.28 55 2.22 0.23 69
toybox(8x8) 7.73 0.24 59 3.51 0.18 76

6. CONCLUSION
In this paper, we propose Smart Butterfly, an effective NoC pow-
er-gating scheme that applies core-state-awareness to flattened
butterfly networks. Smart Butterfly exploits the rich connectivity
of flattened butterfly networks, and selectively powers off routers
attached to sleeping cores to save more power. Furthermore, it
achieves a wide range of power-latency trade-offs by adjusting the
number of ON routers. We propose two heuristic algorithms to
implement Smart Butterfly with different complexity and perfor-
mance. Simulation results show that the two heuristic algorithms
are able to achieve near-optimal solutions with low complexity,
resulting in 42.85% and 60.48% less power consumption, on av-
erage, on 4x4 and 8x8 networks compared to a recently proposed
mesh-based technique, respectively.

7. ACKNOWLEDGEMENT
This research is supported, in part, by the National Science Foun-
dation (NSF) grant CCF-1321131 and the Software and Hardware
Foundations program of the NSF.

8. REFERENCES
[1] Agarwal, N., Krishna, T., Peh, L. S., & Jha, N. K., GARNET: A detailed on-

chip network model inside a full-system simulator. In IEEE ISPASS, pp. 33-42,
2009.

[2] Chen, L., & Pinkston, T. M., NoRD: Node-router decoupling for effective
power-gating of on-chip routers. In MICRO, pp. 270-281, 2012.

[3] Chen, L., Zhao, L., Wang R., & Pinkston, T. M. (2014). MP3: Minimizing
Performance Penalty for Power-gating of Clos Network-on-Chip", In HPCA,
2014.

[4] Das, R., et al., Catnap: Energy Proportional Multiple Network-on-Chip," In
ISCA, 2013.

[5] Kim, J., Balfour, J., & Dally, W., Flattened butterfly topology for on-chip
networks. In MICRO, pp. 172-182, 2007.

[6] Kumar, A., Peh, L. S., Kundu, P., & Jha, N. K., Express virtual channels:
towards the ideal interconnection fabric. In ACM SIGARCH Comp. Architec-
ture News, 35(2), pp. 150-161, 2007.

[7] Ma, S., Jerger, N. E., & Wang, Z., Whole packet forwarding: Efficient design
of fully adaptive routing algorithms for networks-on-chip. In HPCA, pp. 1-12,
2012.

[8] Madan, N., Buyuktosunoglu, A., Bose, P., & Annavaram, M., A case for
guarded power gating for multi-core processors. In HPCA, pp. 291-300, 2011.

[9] Matsutani, H., Koibuchi, M., Amano, H., & Wang, D., Run-time power gating
of on-chip routers using look-ahead routing. In ASP-DAC, pp. 55-60, 2008.

[10] Samih, A., et al., Energy-efficient interconnect via router parking. In HPCA,
pp. 508-519, 2013.

[11] Sun, C., et al., DSENT-a tool connecting emerging photonics with electronics
for opto-electronic networks-on-chip modeling. In IEEE/ACM NOCS, pp. 201-
210, 2012.

Figure 3. 4x4 results: (1-3) Mesh_BB, Mesh_RPA, Mesh_RPC, (4-5) FB_RPA, FB_RPC, (6-8) FB_BB, FB_EC, FB_MV

Figure 4. 8x8 results: (1-2) Mesh_RPA, Mesh_RPC, (3-4) FB_RPA, FB_RPC, (5-6) FB_EC, FB_MV

Figure 2. Tradeoff curves between overall NoC power and average packet latency.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

toybox

N
oC

 P
ow

er
 (

W
)

8.5
9
9.5
10
10.5
11

1 2 3 4 5 6 7 8
0

0.5

mpeg4

9

10

11

12

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

mms2

12
14
16
18
20

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

vopd_t

5.2
5.4
5.6
5.8
6

1 2 3 4 5 6 7 8
0

0.5

spec1

12

14

16

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

spec2

12
14
16
18
20

1 2 3 4 5 6 7 8
0

0.5

spec3

10

15

20

1 2 3 4 5 6 7 8
0

0.5

spec4

10

15

20

A
PL

 (
cy

cl
es

)

Dynamic
Static

1 2 3 4 5 6
0

0.5
1

1.5
2

2.5
3

toybox

N
oC

 P
ow

er
 (

W
)

20
24
28
32

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3
mpeg4

20
24
28
32
36

1 2 3 4 5 6
0

1

2

mms2

20
24
28
32
36

1 2 3 4 5 6
0

1

2

3

vopd_t

20
25
30
35
40

1 2 3 4 5 6
0

2

spec5

20

40

60

1 2 3 4 5 6
0

1

2

3

spec6

20
25
30
35
40

1 2 3 4 5 6
0

1

2

3

4

spec7

20
25
30
35
40
45

1 2 3 4 5 6
0

5
spec8

20

30

40

A
PL

 (
cy

cl
es

)

Dynamic
Static

9 9.2 9.4 9.6 9.8

0.4

0.45

0.5

0.55

0.6

Latency (cycles)

N
oC

 P
ow

er
 (

W
)

4x4: toybox

13 14 15 16 17
0.3

0.35

0.4

0.45

0.5

Latency (cycles)

4x4: spec3

FB_BB
FB_EC
FB_MV
FB_RPC
FB_RPA

20 22 24 26

1.1

1.3

1.5

1.7

1.9

Latency (cycles)

8x8: toybox

20.2 20.4 20.6 20.8

1.6

1.8

2

2.2

2.4

Latency (cycles)

8x8: spec7

